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Abstract

Identifying the local properties of a structure, either to perform structural
health monitoring or to fine tune a numerical model, requires the updating
of a large number of parameters. With a high spatial density, but a low
dynamic range response information, high-speed-camera measurements have
the potential to identify a large number of localized parameters. In contrast,
accelerometer measurements provide low-spatial-density modal shapes, but
a high dynamic range, and introduce the problem of mass loading. In this re-
search, modal shapes from a high-speed camera are used, providing full-field
response information about the observed structure and an over-determined
optimization problem. Since the high-speed camera has a lower dynamic
range than the accelerometer and the signal-to-noise ratio is low where the
displacement amplitude is small, location-specific weighting methods were
introduced. The numerical and real experiments showed that the accelerom-
eter’s positioning is important for successful updating, while with a high-
speed-camera measurement this is not relevant. This research showed that
due to the spatial over-determination, the model updating based on high-
speed-camera data, was significantly better than the low-spatial-resolution,
accelerometer-based approach.
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1. Introduction

High-speed imaging has become a popular approach for both static and
dynamic measurements because it is a non-contact method and provides full-
field response information. Lucas and Kanade [1] developed an algorithm for
tracking a pattern as it moves across the camera’s sensor. Peters et al. [2] used
the approach in the field of mechanics, where it is known as Digital Image
Correlation (DIC) [3]. In the field of structural dynamics, Niezrecki et al. [4]
reviewed the use of DIC and Baqersad et al. [5] reviewed the use of multiple
optical methods. The 3D response of the structure is identified using multiple
synchronized high-speed cameras [6]; however, Gorjup et al. [7] showed that,
using frequency-domain triangulation, the 3D operational shapes of a linear,
time-invariant system can be identified using a single high-speed camera.
Renaud et al. [8] reconstructed the vibration shapes by combining a single
camera footage and the finite-element model. Barone et al. [9] used a single
camera and mirrors to create pseudo-stereo images of a target and used 3D
DIC to identify the 3D displacements. Felipe-Sesé et al. [10] proposed a
combination of fringe projection and DIC to identify the 3D modal shapes.
Javh et al. [11] showed that the modal shapes can also be identified using
a still camera as an integrator for the Fourier coefficients of an optical flow,
while Gorjup et al. [12] extended the method to 3D deflection shapes. For
operational modal analysis, Chang et al. [13] proposed compressed sensing
using a full-field measurement, and an automated harmonic-signal-removal
technique was presented by Hasan et al. [14]. Del Sal et al. [15] showed that
the accuracy of the deflection shape measurements significantly rises with an
increasing number of used cameras.

The use of high-speed cameras has significantly increased in the last two
decades and the advances in technology make their use accessible in various
applications. Huang et al. [16] proposed a pre-processing method for DIC on
rotating structures and for high surface speeds, while Wollmann et al. [17]
proposed motion blur suppression. Khadka et al. [18] used a DIC system,
mounted on a semi-autonomous UAV, to monitor rotating wind turbines,
Jiang et al. [19] used robust line-tracking photogrammetry to inspect a rail-
way power line and Bhowmick et al. [20] measured the full-field time history
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of a continuous edge. Tarpø et al. [21] estimated the full-field strain of subsys-
tems within a time-varying, non-linear system using modal expansion, while
Chabrier et al. [22] used DIC measurements to characterize a vibro-impact
absorber. With output-only data, Lu et al. [23] used vision modal analysis
to identify the modal shapes.

The field of finite-element-model updating is well established and is still
in active development. Friswell et al. [24] researched finite-element-model up-
dating in detail and classified it into the direct and sensitivity-based methods.
Recently, Zhu et al. [25] proposed a substructure-based sensitivity method
to accelerate the convergence of model updating. Rezaiee-Pajand et al. [26]
presented an innovative, sensitivity-based updating strategy using a combi-
nation of the modal kinetic energy and the modal strain energy. Girardi et
al. [27] proposed a numerical method for finding a global minimum of the cost
function. Wan et al. [28] used a global-sensitivity analysis to decide on the
best parameters to update. Recently, Bayesian methods for finite-element-
model updating have been researched for structural health monitoring [29]
and including the damping data in the updating procedure [30]. Patelli et
al. [31] compared the sensitivity and Bayesian model updating approaches
and found that the updated parameters from both are similar; however, the
Bayesian approach requires large computational resources, even when surro-
gate models are used [32]. The machine-learning approach to model updating
is also gaining in popularity; Gaussian process emulation for the uncertain-
parameter identification was presented by Zhou et al. [33], and a combination
of machine-learning approaches was used by Xia et al. [34]. Seventekidis et
al. [35] used deep-learning-based model updating to perform structural health
monitoring.

The use of high-speed-camera measurements in finite-element-model up-
dating has the benefit of a large number of degrees of freedom being measured
simultaneously, which enables the identification of local mode-shape features
and the use of local correlation indicators. To achieve a spatial density of
information similar to a high-speed camera by using accelerometers can be
time consuming and a large number of sensors must be used, requiring sen-
sors position optimization [36] and adding mass to the structure. One of the
first uses of high-speed cameras for model updating was by Wang et al. [37]
who used Tchebichef moment descriptors to describe modal shapes. Ngan et
al. [38] used DIC measurements to investigate the Zernike moment descrip-
tors. Zanarini [39] compared the updating results when the experimental
data are obtained using high-speed cameras with 3D DIC algorithm, SLDV
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and ESPI. While Rohe et al. [40] successfully used SLDV measurements in the
updating procedure, Zanarini showed that the 3D DIC and ESPI approaches
were superior to SLDV. Recently, Cuadrado et al. [41] used the sensitivity
approach to update the parameters of a composite plate using a full-field
vibration measurement; however, only three parameters were updated.

While the research of high-speed cameras usage in the updating proce-
dure exists, the advantages of full-field structural response information to
obtain an overdetermined optimization problem for updating a large num-
ber of localized parameters has previously not been extensively addressed. In
this research, displacements, identified from a high-speed camera footage, are
used to update a large number of unknown parameters and identify a local-
ized anomaly on the structure. The influence of the number of measured de-
grees of freedom, modal-shape noise and measurements-location positioning
(for accelerometer measurements) on the updated parameters is investigated
with numerical and real experiments.

This manuscript is organized as follows. Section 2 presents the theoreti-
cal background of image-based displacement identification, full-field modal-
parameter identification and finite-element-model updating. The Section 3
introduces the location-weighting to rely on data where noise is relatively
small. Section 4 presents the real experiment along with the model updating-
results. The conclusions are drawn in Section 5.

2. Theoretical background

The displacement identification from the high-speed-camera video, modal-
parameter identification and sensitivity-based finite-element-model updating
are discussed in this section.

2.1. Image-based displacement identification

The high-speed camera captures the sequential frames with light-intensity
information for each pixel, which can be used to identify the displacements.
To extract the displacement of a certain pixel, or a subset of pixels, a num-
ber of algorithms can be used. For the purposes of this research, a 2D DIC
algorithm will be used, where only the rigid translations of the subsets are
identified. At small deformations, it was found, that identifying only the
translations significantly decreases the computation time and provides re-
sults with smaller noise (with respect to also identifying the distortion and
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rotation). DIC is based on an iterative algorithm, whose goal is to minimize
the cost function S [3, 42], in our case:

S =
∑
x

∑
y

(
Iref(x, y)− I(x+ ∆x, y + ∆y)

)2
, (1)

where Iref represents the intensities of the subset of pixels on the reference
image (usually the first captured image) and I on the current image. When S
is minimized, ∆x and ∆y represent the identified displacements of the subset
on the current image with respect to the reference image in the horizontal
and vertical directions, respectively. The spatial resolution is limited by
the subset size. An overlap larger than 1/3 of a subsets does not, in general,
increase the resolution further [43]; however, in this research it was found that
a larger overlap did provide additional information. The practical aspects of
modal testing using high-speed cameras were presented by Witt et al. [44].

To successfully identify the displacements using DIC, a pattern that
moves along with the structure, must be present on the inspected surface.
The pattern-quality measure was researched by Lecompte et al. [45] and Pan
et al. [46]. With DIC algorithm, a speckle pattern is normally used, which is
usually applied to the surface. Various pattern-application techniques were
reviewed in [47].

In this research, a speckle pattern was generated using a Python package
speckle-pattern [48]. The speckles are generated in a grid pattern where
the user can choose the grid step and the speckle size. Additionally, the
randomness of speckles position can be adjusted, as well as the variation in
speckle sizes. The pattern was printed on a sticker [44] that was applied to
the front surface of the structure, see Sec. 4.

2.2. Hybrid full-field experimental modal analysis

Recently, the most used technique for modal-parameter identification
based on the frequency-response-function estimate is the Least-Squares Com-
plex Frequency (LSCF) method [49] in combination with the Least-Squares
Frequency Domain (LSFD) method [50, 51]. The FRF estimates, identi-
fied from the high-speed-camera measurement, are noisy, especially at higher
frequencies where the displacements are usually small in comparison to the
noise on the camera’s sensor. Five bits (of the total twelve) represent the
noise for the camera used in this research and the noise level is at 0.00035
px [52]; consequently, the LSCF pole identification is less reliable. A hy-
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brid method, combining the high-dynamic-range acceleration measurement
with the spatially dense high-speed-camera measurement, was proposed by
Javh et al. [52]. With the hybrid method, the poles are identified using the
LSCF method by fitting a rational polynomial function to the acceleration
measurement data:

accαj(ω) =

∑
r aj,r · e−i r∆t ω∑
r br · e−i r∆t ω

, (2)

where j is the location index, r is the polynomial order, ∆t is the time step
in seconds and ω is the angular frequency. The denominator roots are poles
of the function and are associated with the complex eigenvalues accλr. To
select the stable, physically meaningful poles, an increasing polynomial order
is used and a stability chart is plotted [53]. accλr contains information about
the r-th natural frequency, ωr, and the damping, ζr :

accλr = −ζr ωr ± iωr
√

1− ζ2
r . (3)

The identified complex eigenvalues accλr are then used in the LSFD method,
where a polynomial is fitted to the camera FRF estimates, camαj(ω):

camαj(ω) =
N∑
r=1

(
rAj

iω − accλr
+

rA
∗
j

iω − accλ∗r

)
− AL

ω2
+ AU, (4)

where rAj is the modal constant for the r-th mode, at the j-th location and ∗

denotes a complex conjugate. AL and AU are the lower and upper residuals,
respectively, representing the influence of the modes below and above the
observed frequency range. Spatially dense modal shapes are obtained because
of the large number of locations j.

The LSCF and LSFD methods are implemented in the open-source Python
package pyEMA [54].

2.3. Sensitivity-based finite-element-model updating

The sensitivity methods are based on solving a non-linear least-squares
optimization problem using the Marquerdt approach [55], where a linearisa-
tion and iterative solving are used. The numerical model is compared to the
measured values using the residual vector:

δz = zm − zj, (5)
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where zm is the vector of the measured/reference data and zj is the vector of
the corresponding data from the numerical simulation in the j-th iteration.
Any type of response data that can be obtained from both the measurement
and the numerical model can be included in the residual vector. The eigen-
values and modal shapes are the most commonly used; however, the FRFs
can also be included [56, 57].

When computing the residual vector, problems of mode matching and
scaling emerge. Mode matching is necessary when not all the modes that
are represented in the numerical model are identified, e.g., torsional and (for
2D DIC) out-of-plane modes, meaning that a simple sorting of eigenvalues
by size and comparing the first few shapes is not correct. The established
approach is to use the Modal Assurance Criterion (MAC) [58] to compute the
MAC matrix. The elements in the matrix with a value close to one, represent
the matching modal shapes. It is important to note here, that with higher,
geometrically complex modal shapes, a small number of measured points can
cause false matching due to spatial aliasing, a problem that does not occur
with a full-field measurement. A good indicator for evaluating a sufficient
number of measurement points is the auto-MAC matrix, where the goal is a
diagonal matrix, see Fig. 1. The problem of scaling must also be addressed

0 1 2 3 4 5 6 7

Mode index

0
1
2
3
4
5
6
7

M
o
d
e

in
d
ex

a)

0 1 2 3 4 5 6 7

Mode index

0
1
2
3
4
5
6
7

b)

Figure 1: Auto MAC matrix for a) 9 measured points and b) 160 measured points in the
modal shape.

when comparing the modal shapes, since the scaling of measured and numer-
ical shapes might not be consistent due to the different mass normalizations
of the mode shapes, the consequence of an incorrect mass distribution in the
numerical model. To scale the measured shapes to the numerical shapes and
correct the 180◦ phase discrepancy, a Modal Scale Factor (MSF) [59] is used,
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see Fig. 2.
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Figure 2: Scaling of modal shapes with the Modal Scale Factor. a) no scaling and b) with
scaling.

To update the parameters of the numerical model, the error function is
minimized:

J(θ) = εT · ε, (6)

where · denotes the matrix or vector multiplication, T denotes the transpose
and θ is a vector of parameters that are updated. ε is defined as:

ε = δz− Sj · δθ (7)

where Sj is the sensitivity matrix, evaluated in the j-th iteration and δθ is:

δθ = θj − θj+1 (8)

The sensitivity matrix Sj contains partial derivatives of all the data in zj
with respect to the updating parameters:

Sj =


∂z1
∂θ1

∣∣
θ=θj

∂z1
∂θ2

∣∣
θ=θj

. . .

∂z2
∂θ1

∣∣
θ=θj

∂z2
∂θ2

∣∣
θ=θj

. . .
...

...
. . .


(n,m)

, (9)

where n is the number of residuals in δz and m is the number of parame-
ters to be updated. To compute the derivatives in Sj, either an analytical
evaluation or numerical perturbation can be used [60]. The analytical dif-
ferentiation has the advantage of speed; however, parametrized matrices are
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not always available in finite-element solvers. On the other hand, the im-
plementation of a numerical derivation requires multiple evaluations of the
finite-element model. For large numbers of elements, the time of a single
evaluation significantly increases; on a personal PC, the evaluation for 999
elements lasted for 0.15 seconds, while for 10 000 elements it lasted for 10
seconds. To address the problem of computation time, parallel computing
can be used. In this research, the number of elements was relatively small
(999 element) and the sensitivity matrix was computed numerically.

When the number of residuals n is larger than the number of updat-
ing parameters m, the system is over-determined and the approximation of
the updating parameters in the next iteration, j + 1, can be computed by
minimizing Eq. (6) using the Marquardt approach:

θj+1 = θj +
[
Sj · STj

]−1 · STj ·
(
zm − zj

)
(10)

When the number of updating parameters m is larger than the number of
residuals n, the updating parameters cannot be uniquely identified. The
Tikhonov regularization [61] is used to obtain the solution with the minimal
change in updating parameters. Information about the level of confidence for
the initial estimate is written in the weighting matrix Wθθ, a diagonal ma-
trix with reciprocal values of the estimated variances of the parameters, with
a shape of (n × n). When the same weight is given to all of the updating
parameters, the Tikhonov regularization corresponds to the L2 regulariza-
tion [62]. Additionally, the measured data can be weighted to describe the
noise and uncertainty. A diagonal matrix with reciprocal values of the vari-
ances of the measured data Wεε, with a shape of (m × m), is constructed
and the weighted least-squares solution can be computed. Combining the
weighted least-squares solution with the Tikhonov regularization gives an
approximation of the parameters in the iteration j + 1:

θj+1 = θj +
[
STj ·Wεε · Sj + Wθθ

]−1 · STj ·Wεε ·
(
zm − zj

)
(11)

Eq. (11) is also used for over-determined systems when one or more parame-
ters have no effect on the residuals, when multiple parameters have the same
effect or when the measurements are noisy.

In this research, noisy measurements are used and location-specific weight-
ing of the modal shapes is introduced by Eq. (11), see Sec. 3. All of the
parameters were given equal weight in Wθθ, chosen so that the Euclidean
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norm of Wθθ was equal to the Euclidean norm of Wεε.

3. Numerical research on the location-weighting of noisy data

In this section, the location-specific weighting of noisy data is investigated
based on a numerical experiment. The effects of sensor position and noise
level on the model updating are discussed.

The measurement was simulated using the reference numerical model,
created by modelling a beam (Fig. 3) with 999 Euler-Bernoulli finite ele-
ments [63]. The density of the material, ρ, for the reference model was
7400 kg/m3 and the Young’s modulus, E, was 180 GPa. To introduce a pa-
rameter variation, the Young’s modulus was reduced (36 GPa) for elements at
locations from 500 through 520. A free-free boundary condition was applied
and no damping was included.

500 mm

Reference numerical model (1000 DOF)

Reduced Young's modulus area
at DOFs 500 - 520

Dataset A (6 DOF)

Dataset B (1000 DOF)

30 mm

15 mm

Figure 3: Beam dimensions in the reference numerical model. Translational degrees of
freedom for dataset A and dataset B are presented.

From the reference numerical model, two reference datasets with the
first five eigenvalues and the associated modal shapes (excluding rigid-body
modes) were extracted, i.e., reference datasets A and B (Fig. 3). The modal
shapes in dataset A were generated in 6 translational Degrees Of Freedom
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(DOFs), to simulate the spatially sparse accelerometer measurement. Modal
shapes in dataset B were generated in 1000 translational DOFs, simulating
the spatially dense high-speed-camera measurement. The rotational DOFs
were excluded from the modal shapes. Normally distributed noise was added
to the modal shapes of both datasets:

φ̂ = S + N, (12)

where φ̂ is the modal shape contaminated with noise, S is the modal shape
without noise and N is the zero-mean noise signal, which was generated to
obtain the desired Signal-to-Noise Ratio (SNR):

SNRdB = 20 log10

( Srms

Nrms

)
, (13)

where Srms and Nrms are root mean square values of S and N, respectively.
Since the accelerometers have a higher dynamic range than the high-speed
camera, a higher level of noise was added to the modal shapes in dataset B.
The SNRs for the first five modal shapes are presented in Tab. 1 where the
shapes at higher frequencies were given a lower SNR. The first four modal
shapes from datasets A and B are shown in Fig. 4, where the increasing level
of noise is also seen.

Table 1: Modal shape SNR [dB] for datasets A and B.

Mode nr. A (6 DOF) B (1000 DOF)
1 70 30
2 67 27
3 64 24
4 61 21
5 58 18

The finite-element model of the beam to be updated was the same as the
reference numerical model but the reduced Young’s modulus area was not
simulated, making the Young’s modulus uniform along the entire length of
the beam.

The finite-element model was updated using the sensitivity approach, see
Sec. 2.3, and the Young’s moduli of all the elements were chosen as the
updating parameters. In the updating procedure, the eigenvalue and modal-
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Figure 4: Modal shapes from dataset A and dataset B.

shape residuals were minimized. The eigenvalue residuals were computed
as:

zλ,i =
λi − λ̂i
λ̂i

(14)

where λi is the i-th numerical eigenvalue and λ̂i is the corresponding eigen-
value from the reference dataset. The difference was normalized to achieve
equal weightings of all the eigenvalue residuals. The modal-shapes residu-
als were computed location-by-location, meaning that the amplitudes of the
shape at the corresponding location were subtracted:

zφ,i,j =
φi,j − φ̂i,j√∑nmodes

i=1

∑nlocations

k=1 φ̂2
i,k

, j = 1 . . . nlocations (15)

where φi,j is the i-th numerical modal shape at location j and φ̂i,j is the i-th
modal shape from the reference dataset at the matching location. Prior to
residual computation, the modal shapes were scaled using MSF, see Sec. 2.3.
The first five translational eigenvalues and modal shapes were included in
the updating procedure.

In the updating procedure, each mode shape φi was location weighted.
Initially, the weighting was unitary:

wε,φi,j = w, j = 1 . . . nlocations (16)
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where w is an arbitrary scalar weight. This unitary weighting does not take
into account the large uncertainty in the DOFs close to the mode-shape
nodes, where the local SNR is low, see Fig. 5. As an alternative to unitary
weighting, location-specific-weighting methods were considered. The abso-
lute and square weighting methods were studied. The absolute weighting
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Figure 5: a) normalized modal shape from dataset B and b) local Signal-to-Noise Ratio
along the beam. A moving average with a kernel size of 10 was used to compute the local
SNR.

normalizes the absolute value of the shape with the Euclidean norm:

wε,φi,j =
|φi,j|√∑nmodes

i=1

∑nlocations

k=1 φ2
i,k

, j = 1 . . . nlocations (17)

The square weighting normalizes the square of the shape with the Euclidean
norm:

wε,φi,j =
φ2
i,j√∑nmodes

i=1

∑nlocations

k=1 φ2
i,k

, j = 1 . . . nlocations (18)

The weights for all the eigenvalues and modal shapes were assembled in a
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diagonal weighting matrix:

Wεε = diag(wε,λ0 , wε,λ1 , ...,w
T
ε,φ0

,wT
ε,φ1

, ...) (19)

where wε,λi is the weight of eigenvalue λi and wε,φi is the vector weight
of modal shape φi, computed with Eq. (16), (17) or (18). The weight of
eigenvalues wε,λi were chosen as a Euclidean norm of φi, giving λi and φi
equal weight.

Each of the three weighting methods were used to update the finite-
element model. The results in Fig. 6 show that the unitary weighting is not
appropriate for the low-dynamic-range data in dataset B, since the updated
Young’s moduli are far from physically meaningful. For dataset A, the uni-
tary weighting performs best; however, for dataset B, the best agreement
between the updated and true values of the Young’s moduli was achieved
using the square weighting, see Fig. 6c.
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Figure 6: Young modulus along the beam as a result of different weighting methods. a)
unitary, b) absolute and c) square weighting.

With dataset A, the problem of sensor location appears (due to the small
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number of sensors). To investigate the impact of the sensor location, the
sensors in dataset A were randomly positioned along the beam. The random
sensor positioning simulates the lack of knowledge regarding the optimal/best
sensors positions, which is often the case for a geometrically complex struc-
ture (without preceding structural analysis). The updating results for three,
random sensor positions, unitary weighting and the modal-shape noise ac-
cording to Tab. 1, are shown in Fig. 7. It is clear that with the low spa-
tial density measurement, the change in the sensor location impacts heavily
on the updated parameter values. The relative uncertainty of the updated
Young’s moduli (Fig. 8) in the low-stiffness area of the beam (centre) is larger
than 200 %, while the relative error in the same area is 55 % when dataset
B was used, see Fig. 6c. Additionally, the pairing of the modal shapes from
the experiment and the numerical model is subject to errors. Typically, a
MAC filter is used; however, with low-spatial-density modal shapes, spatial
aliasing can occur, see Sec. 2.3.
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Figure 7: Dataset A - Updated Young’s moduli (left) for three different (random) ac-
celerometer positions (indicated on the right by orange dots).

With the high-spatial-density measurement (dataset B), full-field modal
shapes are obtained, eliminating the sensor-location problem. Since the noise
levels are usually higher in high-speed-camera measurements, the impact of
the noise level was investigated. Fig. 9 shows the updated Young’s moduli
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Figure 8: Relative error in updated Young’s moduli along the beam for Figs. 7a, 7b, 7c
and camera (Fig. 6c). a) full beam and b) zoom-in on left part of the beam.

for mode-shape SNRs of 30 dB and 20 dB (for first shape, higher shapes
had lower SNRs as presented in Tab. 1), where the square weighting was
used. It is clear that even with a SNR of 20 dB, the updating procedure
correctly identified the low stiffness area. The parameters converged and
were correctly identified over the entire length of the beam; however, some
parameter deviation was introduced by the very high noise level in the 20-dB
modal shape.

The updated eigenvalues, normalized to the reference values, for the best-
performing weighting (dataset A with unitary weighting and dataset B with
square weighting) and evenly distributed sensors in dataset A, are compared
in Fig. 10. It is clear that the updated eigenvalues, along with the ones not
included in the updating process, are closer to the reference values when
dataset B was used.
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weighting (dataset A) and square weighting (dataset B).

4. Experiment

A real experiment was carried out to obtain data for the model-updating
procedure. A beam was supported by foam pads to approximate a free-free
boundary condition and a notch was cut in the middle of the beam, see
Fig. 11. The full experimental setup is shown in Fig. 12.

The experiment was conducted in two parts, i.e., with the accelerom-
eters and the high-speed camera. First, two accelerometers were attached
to the beam (100 and 300 mm from the left edge) and a modal hammer,
with a roving-hammer technique was used to excite the beam in the vertical
direction at 9 locations, equally spaced at every 50 mm. The acceleration
and force measurements were 1 second long and the sampling frequency was
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Figure 11: Experimental setup of a beam with a notch.

51 200 Hz. The FRF estimates were computed and an open-source Python
package pyEMA [54] was used to obtain the modal parameters.

Second, a Photron FastCam SA-Z high-speed camera was used to measure
the response of the beam. The accelerometers were kept attached and a
speckle pattern was applied to the front face of the beam, see Sec. 2.1. A
Sigma lens (focal length 50 mm and f2.8) was used, the field of view was 72
× 1024 px (37.113 × 527.835 mm) and the region of interest was 29 × 970
px (14.948 × 500.000 mm). The approximate distance from the camera to
the beam was 115 cm and the image scale was 0.515464 mm/px. Powerful
flickerless LED lights were used to illuminate the surface of the beam and
a black screen was placed behind the beam to eliminate the background
reflections. A modal hammer was used to excite the structure in the vertical
direction, at a single location (100 mm from the left-hand edge) the responses
were captured simultaneously for roughly 7000 locations on the beam, see
Fig. 13. The frame rate of the camera was 100 000 frames per second and
the measurement duration was 1 second. The sampling frequency of the
force measurement from the modal hammer was 51 200 Hz; the measurement
duration was also 1 second. The difference in the sampling frequency was
resolved in the frequency domain; since sampling time was the same for both
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Figure 12: Experimental setup of a beam and a high-speed camera.

measurements the frequency resolution was also the same. The observed
frequency range in this research was up to 2000 Hz; however, a high sampling
frequency was used to capture a large number of samples in the transient
response of the structure (excitation with modal hammer), improving the
SNR. To identify the displacements of the beam, an open-source Python
package pyIDI [64] was used, with a DIC algorithm that tracks only the rigid
translations of the subsets (Sec. 2.1). The displacements were identified at
7352 locations on the beam (a regular grid of 8×919), using a subset size
of 31×31 pixels. To reduce the noise, averaging of the points at the same
length of the beam was used, resulting in 919 locations along the beam’s
length. Since the excitation was applied in the vertical direction and the
horizontal displacements were deemed negligible, only vertical displacements
were analysed. The modal parameters were extracted using pyEMA, where
the poles from the acceleration measurement were used to reconstruct the
full-field modal shapes, see the hybrid method in Sec. 2.2. The modal shapes
obtained from the accelerometer and the high-speed-camera measurements
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are shown in Fig. 14. It is clear that the noise level was exaggerated for
the modal shapes studied in the previous section, see Fig. 4, since the high-
speed-camera modal shapes (Fig. 14) are less noisy.

Figure 13: First frame from camera and the centres of the subsets.
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Figure 14: Measured modal shapes from accelerometers and high-speed camera.

The finite-element model to be updated was defined with 999 Timoshenko
finite elements [65]. The free-free boundary condition was applied and the
dimensions of the beam were assumed to be known (Fig. 11). The density
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of the material, ρ, was 7400 kg/m3, the Young’s modulus, E, was 180 GPa
and the Poisson’s ratio, ν, was 0.3. The Timoshenko shear coefficient, κ,
was 5/6. The two accelerometers were modelled as point masses with a mass
of 4 grams. The height of every element was updated, but no information
about the location or depth of the notch was included in the initial parameter
values. Additionally, a single Young’s modulus (homogeneous material was
assumed) was updated for all the elements. ρ, ν and κ were constant for all
elements. It is worth noting that a modelling error was introduced, since the
notch on the real beam was cut on one side only, while the numerical model
simulated the notch on both sides.

The updating procedure was carried out as described in Sec. 3. The
accelerometer mode shapes were weighted using the unitary weighting and
the high-speed-camera shapes with the square weighting. Only the first three
eigenvalues and modal shapes were included in the residual vector.

The results in Fig. 15a show that the updating procedure using low-
spatial-density modal shapes from the accelerometers detected the approxi-
mate location of the notch, but did not successfully identify its depth. On
the other hand, when using the high-spatial-density modal shapes from the
high-speed camera, the location and depth of the notch were successfully
identified (Fig. 15b). Furthermore, the updated height at the edges of the
beam is closer to the true value when using the high-speed-camera measure-
ment. One can notice the increased height of the beam in the area near the
notch, especially in Fig. 15b, a consequence of the modelling that causes a
difference in the stress field (1D Timoshenko beam elements assume symmet-
rical reduction in height). In the updating procedure with the accelerometer
modal shapes, a lower Young’s modulus (Tab. 2) compensated for the poor
identification of the depth of the notch. The updating procedure with the
accelerometer approach reached 90% of the final cost in 38 iterations, while
with the high-speed camera approach the 90% of the final cost was reached
in 47 iterations. The final number of iterations was 49 and 60 for the ac-
celerometer and high-speed camera approach, respectively.

The eigenvalues of the updated model are compared to the initial and
reference values in Fig. 16. It is clear that the high-speed camera modal
shapes were better able to reproduce the reference eigenvalues than the ac-
celerometer modal shapes. The small errors in the updated eigenvalues that
were not included in the updating procedure (only the first three eigenvalues
and modal shapes were included) indicates that the updated parameters are
consistent with the observed structure.
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Table 2: Young modulus of the beam, E [GPa].

Initial Updated True
Accelerometers 180 148.392 ∼190

High-speed camera 180 184.767 ∼190
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Figure 15: Initial, updated and true beam-height distribution. a) modal shapes with
9 locations from the accelerometers and b) modal shapes with 919 locations from the
high-speed camera.

0 1 2 3 4 5 6 7

Eigenvalue index [/]

0.6

0.8

1.0

N
o
rm

a
li
ze

d
ei

g
.

[/
]

Reference values

Initial

Accelerometers

High-speed cam.

Figure 16: Comparison of the initial and updated normalized eigenvalues.
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5. Conclusions

This study researches finite-element-model updating of a large number of
localized parameters using full-field modal shapes.

Initially, a numerical experiment, with the simulated measurement con-
ditions well defined and the true parameter values known was researched.
It was shown that squared, location-specific weighting of the modal shapes
significantly improves the identification process. Furthermore, it was shown
that, due to high spatial density, the high-speed camera approach, is not
exposed to the sensor location problem.

The findings from the numerical experiment were confirmed by the real
experiment, where the noise levels are not predictable and the real values of
the parameters are unknown. This research showed that a reduced Young’s
modulus area and a notch were successfully identified with no prior knowl-
edge of the anomaly location included. The eigenvalues, reconstructed using
the updated parameters with high-spatial-density modal shapes (high-speed
camera) are closer to the measured eigenvalues than the eigenvalues recon-
structed using the parameters from the low-spatial-density modal shapes (e.g.
accelerometers). This is true even for the eigenvalues that were not included
in the updating procedure.

Despite the lower dynamic range of the high-speed-camera measurements,
compared to the accelerometer measurement, the full-field modal shapes en-
able the updating of a large number of localized parameters.
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May 2021.

[49] P. Guillaume, L. Hermans, and H. Van der Auweraer. Maximum Like-
lihood Identification of Modal Parameters from Operational Data. Pro-
ceedings of the 17th International Modal Analysis Conference (IMAC17),
pages 1887–1893, 1999.

[50] H. Van der Auweraer, Willem Leurs, Peter Mas, and Luc Hermans.
Modal parameter estimation from inconsistent data sets. In Proceedings
of SPIE-The International Society for Optical Engineering, volume 4062,
2000.

[51] Bart Cauberghe. Applied frequency-domain system identification in the
field of experimental and operational modal analysis. PhD thesis, Vrije
Universiteit Brussel, 2004.
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